کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4638258 1631999 2016 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Devising efficient numerical methods for oscillating patterns in reaction–diffusion systems
ترجمه فارسی عنوان
ارائه روشهای عددی کارآمد برای الگوهای نوسان در سیستمهای واکنش دهنده
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
چکیده انگلیسی

In this paper, we consider the numerical approximation of a reaction–diffusion system 2D in space whose solutions are patterns oscillating in time or both in time and space. We present a stability analysis for a linear test heat equation in terms of the diffusion dd and of the reaction timescales given by the real and imaginary parts αα and ββ of the eigenvalues of J(Pe)J(Pe), the Jacobian of the reaction part at the equilibrium point PePe. Focusing on the case α=0,β≠0α=0,β≠0, we obtain stability regions in the plane (ξ,ν)(ξ,ν), where ξ=λ(h;d)htξ=λ(h;d)ht, ν=βhtν=βht, htht time stepsize, λλ lumped diffusion scale depending also from the space stepsize hh and from the spectral properties of the discrete Laplace operator arising from the semi-discretization in space. In space we apply the Extended Central Difference Formulas (ECDFs) of order p=2,4,6p=2,4,6. In time we approximate the diffusion part in implicit way and the reaction part by a selection of integrators: the Explicit Euler and ADI methods, the symplectic Euler and a partitioned Runge–Kutta method that are symplectic in the absence of diffusion. Hence, by estimating λλ, for each method we derive stepsize restrictions ht⪅Fmet(h;d,β,p)ht⪅Fmet(h;d,β,p) in terms of the stability curve FmetFmet depending on diffusion and reaction timescales and from the approximation order in space. For the same schemes, we provide also a dispersion error analysis. We present numerical simulations for the test heat equation and for the Lotka–Volterra PDE system with solutions oscillating only in time for the presence of a centre-type dynamics. In these cases, the implicit-symplectic schemes provide the best choice. We solve also the Schnakenberg model with spatial patterns oscillating in space and time in the presence of an attractive limit cycle due to the Turing–Hopf instability. In this case, all schemes attain closed orbits in the phase space, but the Explicit ADI method is the best choice from the computational point of view.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 292, 15 January 2016, Pages 674–693
نویسندگان
, ,