کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
466284 1445246 2016 11 صفحه PDF سفارش دهید دانلود کنید
عنوان انگلیسی مقاله
Empirical search for factors affecting mean particle size of PLGA microspheres containing macromolecular drugs
ترجمه فارسی عنوان
جستجوی تجربی برای عوامل موثر بر اندازه متوسط ذرات داروهای حاوی ماکرومولکولی میکروسفرهای PLGA
کلمات کلیدی
مدل سازی اکتشافی؛ استخراج قوانین؛ انتخاب ویژگی؛ توصیف مولکولی؛ اندازه ذرات
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
چکیده انگلیسی


• We model the mean volumetric particle size of PLGA microspheres containing proteins.
• We examine influence of both technological parameters and substances forming PLGA on mean particle size.
• PLGA and PVA characteristics have dominating role on mean particle size.
• Geometric descriptors of protein molecules and plasticizer were also found to be important features.

Background and objectivesPoly(lactic-co-glycolic acid) (PLGA) has become one of the most promising in design, development, and optimization for medical applications polymers. PLGA-based multiparticulate dosage forms are usually prepared as microspheres where the size is from 5 to 100 µm, depending on the route of administration. The main objectives of the study were to develop a predictive model of mean volumetric particle size and on its basis extract knowledge of PLGA containing proteins forming behaviour.MethodsIn the present study, a model for the prediction of mean volumetric particle size developed by an rgp package of R environment is presented. Other tools like fscaret, monmlp, fugeR, MARS, SVM, kNNreg, Cubist, randomForest and piecewise linear regression are also applied during the data mining procedure.ResultsThe feature selection provided by the fscaret package reduced the original input vector from a total of 295 input variables to 10, 16 and 19. The developed models had good predictive ability, which was confirmed by a normalized root-mean-square error (NRMSE) of 6.8 to 11.1% in 10-fold cross validation training procedure. Moreover, the best models were validated using external experimental data. The superior predictiveness had a model obtained by rgp in the form of a classical equation with a normalized root-mean-squared error (NRMSE) of 6.1%.ConclusionsA new approach is proposed for computational modelling of the mean particle size of PLGA microspheres and rules extraction from tree-based models. The feature selection leads to revealing chemical descriptor variables which are important in predicting the size of PLGA microspheres. In order to achieve better understanding in the relationships between particle size and formulation characteristics, the surface analysis method and rules extraction procedures were applied.

Graphical AbstractFigure optionsDownload high-quality image (43 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods and Programs in Biomedicine - Volume 134, October 2016, Pages 137–147
نویسندگان
, , , , , ,