کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4924421 1430845 2017 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Acoustic equations for a gas stream in rigid-body rotation
ترجمه فارسی عنوان
معادلات صوتی برای جریان گاز در چرخش سفت و محکم
کلمات کلیدی
معادله صوتی، موجبر صوتی، گاز دوار، رسانه طبقه بندی شده،
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی عمران و سازه
چکیده انگلیسی
The classical topic of wave propagation in a rotating gas is revisited by deducing scalar wave equations for propagation of acoustic and rotational waves through a plug flow of gas in rigid-body rotation with arbitrary intensities of the radial stratification. In the light of these novel equations, wave propagation is analyzed in two different base gas states: isothermal and homentropic. In both cases, previous findings are recovered that assess the validity of the equations and new results are established. In the non-homentropic but isothermal case, the set of governing equations is reduced to two coupled scalar wave equations with space dependent coefficients for the disturbances of density and pressure. Travelling wave solutions with variable amplitude have been obtained in the limit of weak stratification both for inertial waves as for acoustic waves which, in general, propagate on different frequency bands that overlap in the small wavenumber region. Furthermore, the entropy stratification in the base state is stable and compels the propagation of internal waves, leading to hybrid acoustic-inertial-vortical modes. In the homentropic case, the adiabatic relation between pressure and density disturbances allows to reduce further the governing equations to a single fourth-order scalar wave equation. In this case, the sound propagation velocity depends on the distance to the rotation axis and solutions are found by multiple-scale analyses in the form of waves with slowly varying amplitude and wavenumber. The corresponding eikonal equation shows that acoustic rays are refracted towards the rotation axis, propagating and spinning along and around it. In that way, the swirling gas behaves as an axial waveguide trapping inside any acoustic ray propagating in the vortex with large enough azimuthal and/or vertical wavenumber component.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Sound and Vibration - Volume 388, 3 February 2017, Pages 339-362
نویسندگان
, ,