کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5007102 1461560 2016 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Analyzing of flexible gripper by computational intelligence approach
ترجمه فارسی عنوان
تجزیه و تحلیل گیرنده انعطاف پذیر با استفاده از رویکرد هوش محاسباتی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
چکیده انگلیسی
Adaptive grippers should be able to detect and recognize grasping objects. To be able to do it control algorithm need to be established to control gripper tasks. Compliant underactuated mechanisms with passive behavior can be used for modelling of adaptive robotic fingers. Undearactuation is a feature which allows fully adaptability of robotic fingers for different objects. In this study gripper with two fingers was established. Finite element method (FEM) procedure was used to optimize the gripper structural topology. Kinetostatic model of the underactuated finger mechanism was analyzed. This design of the gripper has embedded sensors as part of its structure. The use of embedded sensors in a robot gripper gives the control system the ability to control input displacement of the gripper and to recognize specific shapes of the grasping objects. Since the conventional control strategy is a very challenging task, soft computing based controllers are considered as potential candidates for such an application. The sensors could be used for grasping shape detection. Given that the contact forces of the finger depend on contact position of the finger and object, it is suitable to make a prediction model for the contact forces in function of contact positions of the finger and grasping objects. The prediction of the contact forces was established by using a soft computing (computational intelligence) approach. To perform the contact forces estimation adaptive neuro-fuzzy (ANFIS) methodology was used. FEM simulations were performed in order to acquire experimental data for ANFIS training. The main goal was to apply ANFIS network in order to find correlation between sensors' stresses and finger contact forces. Afterwards ANFIS results were compared with benchmark models (extreme learning machine (ELM), extreme learning machine with discrete wavelet algorithm (ELM-WAVELET), support vector machines (SVM), support vector machines with discrete wavelet algorithm (SVM-WAVELET), genetic programming (GP) and artificial neural network (ANN)). The reliability of these computational models was analyzed based on simulation results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mechatronics - Volume 40, December 2016, Pages 1-16
نویسندگان
, , , , ,