کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5145916 1497343 2017 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effect of radiation emission and reabsorption on flame temperature and NO formation in H2/CO/air counterflow diffusion flames
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
پیش نمایش صفحه اول مقاله
Effect of radiation emission and reabsorption on flame temperature and NO formation in H2/CO/air counterflow diffusion flames
چکیده انگلیسی
The radiation effect on flame temperature and NO emission of H2-lean (0.2H2 + 0.8CO) and H2-rich (0.8H2 + 0.2CO) syngas/air counterflow diffusion flames was numerically investigated using OPPDIF code incorporated with the optical thin model, statistical narrow band model and adiabatic condition. Firstly, the coupled effect of strain rate and radiation was studied. Disparate tendencies of NO emission with an increasing strain rate between H2-lean and H2-rich syngas flames were found at very small strain rate, and the effect of radiation reabsorption on NO formation can be neglected when the strain rate was greater than 100 s−1 for both H2-lean and H2-rich syngas flames. Because the radiation effect is vital to flames with small strain rate, its impact on flame temperature and NO emission was investigated in detail at a strain rate of 10 s−1. The results indicated that NO formation is more sensitive to radiation reabsorption than flame temperature, especially for the H2-rich syngas flame. The underlying mechanism was discovered by using reaction pathway analysis. Furthermore, the radiation effect under CO2 dilution of the syngas fuel was examined. It was demonstrated that the radiation effect on flame temperature became more prominent with the increase of CO2 concentration for both H2-lean and H2-rich syngas. The radiation effect on NO emission increased first and then decreased with an increasing CO2 content for H2-lean syngas, whereas for H2-rich syngas the radiation effect is monotonic.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Hydrogen Energy - Volume 42, Issue 34, 24 August 2017, Pages 22015-22026
نویسندگان
, , ,