کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
518090 867554 2015 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Adaptive algebraic multiscale solver for compressible flow in heterogeneous porous media
ترجمه فارسی عنوان
جبران کننده چند متغیر جبری برای جریان تراکم پذیر در رسانه متخلخل ناهمگن
کلمات کلیدی
روش های چند منظوره، جریان فشرده، رسانه متخلخل هتروزانه، حل کننده خطی مقیاس پذیر، روش حجم محدود چند ضلعی، روش المان محدود چند منظوره، روش های چند بعدی چند بعدی، روش های جبری چند بعدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی

This paper presents the development of an Adaptive Algebraic Multiscale Solver for Compressible flow (C-AMS) in heterogeneous porous media. Similar to the recently developed AMS for incompressible (linear) flows (Wang et al., 2014) [19], C-AMS operates by defining primal and dual-coarse blocks on top of the fine-scale grid. These coarse grids facilitate the construction of a conservative (finite volume) coarse-scale system and the computation of local basis functions, respectively. However, unlike the incompressible (elliptic) case, the choice of equations to solve for basis functions in compressible problems is not trivial. Therefore, several basis function formulations (incompressible and compressible, with and without accumulation) are considered in order to construct an efficient multiscale prolongation operator. As for the restriction operator, C-AMS allows for both multiscale finite volume (MSFV) and finite element (MSFE) methods. Finally, in order to resolve high-frequency errors, fine-scale (pre- and post-) smoother stages are employed. In order to reduce computational expense, the C-AMS operators (prolongation, restriction, and smoothers) are updated adaptively. In addition to this, the linear system in the Newton–Raphson loop is infrequently updated. Systematic numerical experiments are performed to determine the effect of the various options, outlined above, on the C-AMS convergence behaviour. An efficient C-AMS strategy for heterogeneous 3D compressible problems is developed based on overall CPU times. Finally, C-AMS is compared against an industrial-grade Algebraic MultiGrid (AMG) solver. Results of this comparison illustrate that the C-AMS is quite efficient as a nonlinear solver, even when iterated to machine accuracy.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 300, 1 November 2015, Pages 679–694
نویسندگان
, , ,