کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5357664 1388221 2010 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Surface tailoring of SiO2 nanoparticles by mechanochemical method based on simple milling
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی تئوریک و عملی
پیش نمایش صفحه اول مقاله
Surface tailoring of SiO2 nanoparticles by mechanochemical method based on simple milling
چکیده انگلیسی
An appropriate modifying agent is obviously important with regard to the surface treatment of nanoparticles. Moreover, a right physical mixer that can provide enough energy to break up the secondary structure (aggregate and agglomerate) of nanoparticles is absolutely critical to the modification as well. However, it is not easy to give consideration to both of them during the process of modification. As is often the case, we tend to take care of the modifying agent but lose sight of the physical mixer. In this paper, hybrid particles of SiO2/2,4-Diisocyanatotoluene (SiO2/TDI) and SiO2/2,4-Diisocyanatotoluene/hydroxyl silicone oil (SiO2/TDI/(PDMS-OH)) were fabricated by mechanochemical method based on simple milling. The prepared hybrid particles (SiO2/TDI and SiO2/TDI/(PDMS-OH)) were characterized by infrared spectroscopy (FT-IR), static contact angle (CA), water sorption measurement, thermal analysis (TGA and DSC) and transmission electron microscopy (TEM). FT-IR spectra and thermal analysis (DSC) results demonstrate that TDI together with PDMS-OH is chemically anchored to the surface of nano-SiO2. TGA results show that the grafting density of TDI is as high as 2.62 TDI/nm2, while the grafting density of PDMS-OH is 0.0156 PDMS-OH/nm2. Deduced from static contact angle (CA) and water sorption measurement, both hybrid particles exhibit strong hydrophobic (140o for SiO2/TDI and 144o for SiO2/TDI/(PDMS-OH)) after modification. TEM images reveal that hybrid particles (SiO2/TDI and SiO2/TDI/(PDMS-OH)) prepared by ball milling method exhibit much better miscibility and dispersibility in PDMS matrix when compared with those particles prepared by a common mixing device.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Surface Science - Volume 256, Issue 20, 1 August 2010, Pages 5978-5984
نویسندگان
, , ,