کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5423155 1507952 2010 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Relative reactivities of amino and ethenyl groups in allylamine on Si(100)2 × 1: Temperature-dependent X-ray photoemission and thermal desorption studies of a common linker molecule
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی تئوریک و عملی
پیش نمایش صفحه اول مقاله
Relative reactivities of amino and ethenyl groups in allylamine on Si(100)2 × 1: Temperature-dependent X-ray photoemission and thermal desorption studies of a common linker molecule
چکیده انگلیسی
The room-temperature adsorption and thermal evolution of allylamine on Si(100)2 × 1 have been investigated by using temperature-dependent X-ray photoelectron spectroscopy (XPS) and thermal desorption spectrometry (TDS). The presence of a broad N 1 s feature at 398.9 eV, attributed to a N―Si bond, indicates N―H dissociative adsorption. On the other hand, the presence of C 1 s features at 284.6 eV and 286.2 eV, corresponding to C═C and C―N, respectively, and the absence of the Si―C feature expected at 283.2 eV shows that [2 + 2] C═C cycloaddition does not occur at room temperature. These XPS data are consistent with the unidentate staggered and eclipsed allylamine conformer adstructures arising from N―H dissociation and not [2 + 2] C═C cycloaddition. The apparent conversion of the N 1 s feature for Si―N(H)―C at 398.9 eV to that for Si―N(H) at 397.7 eV and the total depletion of C 1 s feature for C―N at 286.2 eV near 740 K indicates cleavage of the C―N bond, leaving behind a Si―N(H) radical. Furthermore, the C═C C 1 s feature at 284.6 eV undergoes steep intensity reduction between 740 K and 825 K, above which a new C 1 s feature at 283.2 eV corresponding to SiC is found to emerge. These spectral changes suggest total dissociation of the ethenyl fragment and the formation of SiC. Moreover, while the total N 1 s intensity undergoes a minor reduction (24%) upon annealing up to 1090 K, a considerable reduction (43%) is found in the overall C 1 s intensity. This observation is consistent with our TDS data, which shows the desorption of C-containing molecules including propene and ethylene at 580 K and of acetylene at 700 K. The lack of N-containing desorbates suggests that the dissociated N species are likely bonded to multiple surface Si atoms or diffused into the bulk. Interestingly, both the staggered and eclipsed N―H dissociative adstructures are found to have a less negative adsorption energy than the [N, C, C] tridentate or the [2 + 2] C═C cycloaddition adstructures by our DFT calculations, which suggests that the observed formation of N―H dissociative adstructures is kinetically favored on the Si(100)2 × 1 surface.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Surface Science - Volume 604, Issues 13–14, 15 July 2010, Pages 1073-1081
نویسندگان
, , ,