کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6413849 1629979 2012 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Assessing the effects of urbanization on annual runoff and flood events using an integrated hydrological modeling system for Qinhuai River basin, China
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
پیش نمایش صفحه اول مقاله
Assessing the effects of urbanization on annual runoff and flood events using an integrated hydrological modeling system for Qinhuai River basin, China
چکیده انگلیسی

SummaryThis study developed and used an integrated modeling system, coupling a distributed hydrologic and a dynamic land-use change model, to examine effects of urbanization on annual runoff and flood events of the Qinhuai River watershed in Jiangsu Province, China. The Hydrologic Engineering Center's Hydrologic Modeling System (HEC-HMS) was used to calculate runoff generation and the integrated Markov Chain and Cellular Automata model (CA-Markov model) was used to develop future land use maps. The model was calibrated and validated using observed daily streamflow data collected at the two outlets of watershed. Landsat Thematic Mapper (TM) images from 1988, 1994, 2006, Enhanced Thematic Mapper Plus (ETM+) images from 2001, 2003 and a China-Brazil Earth Resources Satellite (CBERS) image from 2009 were used to obtain historical land use maps. These imageries revealed that the watershed experienced conversion of approximately 17% non-urban area to urban area between 1988 and 2009. The urbanization scenarios for various years were developed by overlaying impervious surfaces of different land use maps to 1988 (as a reference year) map sequentially. The simulation results of HEC-HMS model for the various urbanization scenarios indicate that annual runoff, daily peak flow, and flood volume have increased to different degrees due to urban expansion during the study period (1988-2009), and will continue to increase as urban areas increase in the future. When impervious ratios change from 3% (1988) to 31% (2018), the mean annual runoff would increase slightly and the annual runoff in the dry year would increase more than that in the wet year. The daily peak discharge of eight selected floods would increase from 2.3% to 13.9%. The change trend of flood volumes is similar with that of peak discharge, but with larger percentage changes than that of daily peak flows in all scenarios. Sensitivity analysis revealed that the potential changes in peak discharge and flood volume with increasing impervious surface showed a linear relationship, and the changes of small floods were larger than those of large floods with the same impervious increase, indicating that the small floods were more sensitive than large floods to urbanization. These results suggest that integrating distributed land use change model and distributed hydrological model can be a good approach to evaluate the hydrologic impacts of urbanization, which are essential for watershed management, water resources planning, and flood management for sustainable development.

► The integrated modeling system proved to be a useful approach for studying the effects of urbanization on runoff and flood. ► Smaller flood event is more affected by urbanization than larger flood. ► Floods discharges are more affected by urbanization than annual runoff. ► At daily time step modeling, flood volume is more affected by urbanization than flood peak.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Hydrology - Volumes 464–465, 25 September 2012, Pages 127-139
نویسندگان
, , , , , , ,