کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6458113 1420865 2017 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Opportunities for enhancing yield and soil carbon sequestration while reducing N2O emissions in rainfed cropping systems
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علم هواشناسی
پیش نمایش صفحه اول مقاله
Opportunities for enhancing yield and soil carbon sequestration while reducing N2O emissions in rainfed cropping systems
چکیده انگلیسی


- A framework to assess the effect of N management on yield and GHG emissions.
- The framework was applied to Australian rainfed wheat systems.
- Opportunities exist for enhancing yield while reducing GHG emissions.
- Improved N management could increase yield by 76% and reduce GHG emissions.
- This N management can be specified according to local soil and climate variables.

Producing the food required to feed the growing global population will inevitably put pressure on the environment and requires sustainable management of agroecosystems. The management strategies should be context-specific, and will require consideration of different stakeholders' interests, and of the local soil and climatic conditions. We developed a framework to analyse nitrogen (N) management options with the objective of increasing crop production while reducing CO2 and nitrous oxide (N2O) emissions from soil, and applied this framework to Australian rainfed wheat systems using a systems modelling approach. The results indicated that modified N management strategies in Australian rainfed wheat systems could increase average grain yield by up to 76% (from 1.7 to 3.0 Mg ha−1) while substantially reducing net soil and N2O emissions (expressed in CO2 equivalents, CO2-eq), compared with current farming practice. Meta-modelling of the simulation results from 613 sites across the Australian wheat-growing regions indicated that site-specific best N management aimed at increasing yield and reducing net soil CO2-eq emissions significantly correlated with water availability, temperature, and antecedent soil carbon content. The results emphasise the opportunity for well-managed intensification to simultaneously increase yield and reduce soil CO2 and N2O emissions in Australian rainfed cropping regions. The 'win-win' N management recommendations should, and can be specified according to local climate and soil conditions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Agricultural and Forest Meteorology - Volume 232, 15 January 2017, Pages 400-410
نویسندگان
, , , , , ,