کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6931361 867558 2015 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An efficient time advancing strategy for energy-preserving simulations
ترجمه فارسی عنوان
یک راهبرد موثر پیشبرد زمان برای شبیه سازی انرژی حفظ
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
Energy-conserving numerical methods are widely employed within the broad area of convection-dominated systems. Semi-discrete conservation of energy is usually obtained by adopting the so-called skew-symmetric splitting of the non-linear convective term, defined as a suitable average of the divergence and advective forms. Although generally allowing global conservation of kinetic energy, it has the drawback of being roughly twice as expensive as standard divergence or advective forms alone. In this paper, a general theoretical framework has been developed to derive an efficient time-advancement strategy in the context of explicit Runge-Kutta schemes. The novel technique retains the conservation properties of skew-symmetric-based discretizations at a reduced computational cost. It is found that optimal energy conservation can be achieved by properly constructed Runge-Kutta methods in which only divergence and advective forms for the convective term are used. As a consequence, a considerable improvement in computational efficiency over existing practices is achieved. The overall procedure has proved to be able to produce new schemes with a specified order of accuracy on both solution and energy. The effectiveness of the method as well as the asymptotic behavior of the schemes is demonstrated by numerical simulation of Burgers' equation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 295, 15 August 2015, Pages 209-229
نویسندگان
, , ,