کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8160489 1525108 2018 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Resistivity behavior of hydrogen and liquid silane at high shock compression
ترجمه فارسی عنوان
رفتار مقاومتی هیدروژن و سیالان مایع در فشرده سازی شوک بالا
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک ماده چگال
چکیده انگلیسی
To study the electrical properties of hydrogen rich compounds under extreme conditions, the electrical resistivity of density hydrogen and silane fluid was measured, respectively. The hydrogen sample was prepared by compressing pure hydrogen gas to 10 MPa in a coolant target system at the temperature of 77 K. The silane sample can be obtained with the same method. High-pressure and high-temperature experiments were performed using a two-stage light-gas gun. The electrical resistivity of the sample decreased with increasing pressure and temperature as expected. A minimum electrical resistivity value of 0.3 × 10-3 Ω cm at 138 GPa and 4100 K was obtained for silane. The minimum resistivity of hydrogen in the state of 102 GPa and 4300 K was 0.35 Ω cm. It showed that the measured electrical resistivity of the shock-compressed hydrogen was an order of magnitude higher than fluid silane at 50-90 GPa. However, beyond 100 GPa, the resistivity difference between silane and hydrogen was very minor. The carriers in the sample were hydrogen, and the concentration of hydrogen atoms in these two substances was close to each other. These results supported the theoretical prediction that silane was interpreted simply in terms of chemical decomposition into silicon nanoparticles and fluid hydrogen, and electrical conduction flows predominately dominated by the fluid hydrogen. In addition, the results also supported the theory of “chemical precompression”, the existence of SiH bond helped to reduce the pressure of hydrogen metallization. These findings could lead the way for further metallic phases of hydrogen-rich materials and experimental studies.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica B: Condensed Matter - Volume 541, 15 July 2018, Pages 89-94
نویسندگان
, , ,