کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1520874 1511792 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effect of Cu-doping on optical, electrical and magnetic properties of chemically synthesized MnS nanocrystals
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد مواد الکترونیکی، نوری و مغناطیسی
پیش نمایش صفحه اول مقاله
Effect of Cu-doping on optical, electrical and magnetic properties of chemically synthesized MnS nanocrystals
چکیده انگلیسی
Manganese sulfide and Cu-doped manganese sulfide nanocrystals have been synthesized by wet chemical technique. The structural, optical, electrical and magnetic properties of as-synthesized nanocrystals have been investigated. The average crystallite size and lattice strain of the samples have been calculated from powder X-ray diffraction patterns using the Williamson-Hall analysis. The results show that the average crystallite size decreased while both the lattice strain and the dislocation density values increased in the Cu-doped MnS nanocrystals. The surface morphology of Cu-doped MnS nanocrystals has lesser particle size than undoped sample and it shows spherical like structures with little agglomeration. The chemical composition of the prepared samples has been obtained from EDAX. It clearly indicates the presence of Cu ions in the MnS lattice. UV-visible spectroscopy shows a blue shift in the optical band gap with doping. The photoluminescence spectra on the doped sample show a quenching of the PL intensity due to strain induced by doping. The electrical conduction, dielectric and impedance properties of as-synthesized nanocrystals have been investigated in the frequency range 50 Hz-5 MHz and temperature range 323-473 K which are greatly affected by doping with Cu. The vibrating sample magnetometer measurement revealed that the undoped MnS has paramagnetic behavior while the Cu-doped MnS has superparamagnetic behavior. On Cu-doping, the saturation magnetization and remanence increases while the coercivity decreases.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Materials Chemistry and Physics - Volume 171, 1 March 2016, Pages 328-335
نویسندگان
, , , ,