کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
234946 465621 2016 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
DEM-CFD simulation of a dense fluidized bed: Wall boundary and particle size effects
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
DEM-CFD simulation of a dense fluidized bed: Wall boundary and particle size effects
چکیده انگلیسی


• Open-source DEM-CFD model able to capture particle dynamics qualitatively.
• Particle–wall interaction dominates the particle dynamics around the wall.
• Solid velocity adequately captured by employing static particles around the wall.
• Particle size is an important parameter for simulating irregular sized particles.

We simulate a small-scale dense gas–solid fluidized bed using an approach coupling the averaged Navier–Stokes equation with a discrete description of particle dynamics. The simulation results are compared to the voidage, solid velocity and granular temperature measured using magnetic resonance (MR), and other experimental measurements for the same fluidized bed. It is found that the simulation is able to predict the minimum fluidization velocity and pressure drop with reasonable agreement and qualitatively capture the solid circulation pattern to a similar degree achieved by previous such simulations. The discrepancies for the solid velocities near the walls and in the central region at upper and lower bed heights were investigated by examining various models of the physical system and the sensitivity of the simulation results to these models. We demonstrate that the particle–wall interaction dominates the particle dynamics in a boundary layer of about 5 particle diameters to the wall and that modeling the wall using fixed particle of comparable size to the fluidized particles provides enhanced resistance reducing solid wall-slip velocity and granular temperature at the boundary layer. Modeling of particle size is shown to be important for capturing the variation of bed dynamics along the bed height direction.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Powder Technology - Volume 293, May 2016, Pages 37–47
نویسندگان
, , ,