کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
4957968 1364789 2018 9 صفحه PDF سفارش دهید دانلود کنید
عنوان انگلیسی مقاله
A deep learning-based multi-model ensemble method for cancer prediction
ترجمه فارسی عنوان
یک روش گروهی چندجمله ای مبتنی بر یادگیری عمیق برای پیش بینی سرطان
کلمات کلیدی
گروه چند مدل؛ یادگیری عمیق؛ بیان ژن؛ انتخاب ویژگی؛ پیش بینی سرطان؛
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
چکیده انگلیسی


- An ensemble of multiple machine learning models outperforms single classifiers.
- We propose a deep learning-based ensemble method for cancer prediction.
- We select differentially expressed genes from gene expression data.
- We present prediction results on lung, stomach and breast cancer data.

Background and Objective: Cancer is a complex worldwide health problem associated with high mortality. With the rapid development of the high-throughput sequencing technology and the application of various machine learning methods that have emerged in recent years, progress in cancer prediction has been increasingly made based on gene expression, providing insight into effective and accurate treatment decision making. Thus, developing machine learning methods, which can successfully distinguish cancer patients from healthy persons, is of great current interest. However, among the classification methods applied to cancer prediction so far, no one method outperforms all the others.Methods: In this paper, we demonstrate a new strategy, which applies deep learning to an ensemble approach that incorporates multiple different machine learning models. We supply informative gene data selected by differential gene expression analysis to five different classification models. Then, a deep learning method is employed to ensemble the outputs of the five classifiers.Results: The proposed deep learning-based multi-model ensemble method was tested on three public RNA-seq data sets of three kinds of cancers, Lung Adenocarcinoma, Stomach Adenocarcinoma and Breast Invasive Carcinoma. The test results indicate that it increases the prediction accuracy of cancer for all the tested RNA-seq data sets as compared to using a single classifier or the majority voting algorithm.Conclusions: By taking full advantage of different classifiers, the proposed deep learning-based multi-model ensemble method is shown to be accurate and effective for cancer prediction.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods and Programs in Biomedicine - Volume 153, January 2018, Pages 1-9
نویسندگان
, , , ,