آشنایی با موضوع

یادگیری ماشین (Machine learning) عبارت است از اینکه چگونه میتوان برای کامپیوتر برنامه ای نوشت که از طریق تجربه یادگیری کرده و عملکرد خود را بهتر کند. یادگیری ممکن است باعث تغییر در ساختار برنامه و یا داده ها شود. تعریف عمومی از یادگیری ماشین آن است که توسط دانشمند کامپیوتر آرتور ساموئل در سال ۱۹۵۹ داده شده است: یک رشته علمی است که به کامپیوترها قابلیت یادگیری می دهد بدون آنکه مشخصا برای آن کار برنامه ریزی شده باشند. یادگیری ماشین زمینه نسبتا جدیدی از هوش مصنوعی است که در حال حاضر دوران رشد و تکامل خود را میگذراند. یادگیری ماشین یک زمینه تحقیقاتی بسیار فعال در علوم کامپیوتر است. علوم مختلفی در ارتباط با یادگیری ماشین در ارتباط هستند از جمله: هوش مصنوعی، روانشناسی، فلسفه، تئوری اطلاعات، آمار و احتمالات، تئوری کنترل و. . . به عنوان یکی از شاخه‌های وسیع و پرکاربرد هوش مصنوعی، یادگیری ماشین به تنظیم و اکتشاف شیوه‌ها و الگوریتم‌هایی می‌پردازد که بر اساس آنها رایانه‌ها و سامانه‌ها توانایی تعلٌم و یادگیری پیدا می‌کنند. هدف یادگیری ماشین این است که کامپیوتر (درکلی‌ترین مفهوم آن) بتواند به تدریج و با افزایش داده‌ها کارایی بهتری در انجام وظیفهٔ مورد نظر پیدا کند. گسترهٔ این وظیفه می‌تواند از تشخیص خودکار چهره با دیدن چند نمونه از چهرهٔ مورد نظر تا فراگیری شیوهٔ گام‌برداری روبات‌های دوپا با دریافت سیگنال پاداش و تنبیه باشد. طیف پژوهش‌هایی که در یادگیری ماشینی می‌شود گسترده‌است. در سوی نظری‌ آن پژوهش‌گران بر آنند که روش‌های یادگیری تازه‌ای به وجود بیاورند و امکان‌پذیری و کیفیت یادگیری را برای روش‌های‌شان مطالعه کنند و در سوی دیگر عده‌ای از پژوهشگران سعی می‌کنند روش‌های یادگیری ماشینی را بر مسایل تازه‌ای اعمال کنند. البته این طیف گسسته نیست و پژوهش‌های انجام‌شده دارای مولفه‌هایی از هر دو روی‌کرد هستند. یادگیری ماشین کمک فراوانی به صرفه جویی در هزینه‌های عملیاتی و بهبود سرعت عمل تجزیه و تحلیل داده‌ها می‌کند. به عنوان مثال در صنعت نفت و پتروشیمی با استفاده از یادگیری ماشین، داده‌های عملیاتی تمام حفاری‌ها اندازه‌گیری شده و با تجزیه و تحلیل داده‌ها، الگوریتم‌هایی تنظیم می‌شود که در حفاری‌های بعدی بیشترین نتیجه و استخراج بهینه ای را داشته باشیم. خروجی تکنیک یادگیری ماشین، یک مدل است. مدل ها اشکال مختلف می گیرند و انواع مختلف مدل ها در انواع مختلفی از مشکلات کاربرد دارند، اما به طور کلی یک مدل یک تابع ریاضی است که تعدادی از ورودی ها را می گیرد و پیش بینی برخی از مقادیر را ارانه می دهد که برای اندازه گیری به آسانی قابل دسترس نیستند.

در این صفحه تعداد 3994 مقاله تخصصی درباره یادگیری ماشین که در نشریه های معتبر علمی و پایگاه ساینس دایرکت (Science Direct) منتشر شده، نمایش داده شده است. برخی از این مقالات، پیش تر به زبان فارسی ترجمه شده اند که با مراجعه به هر یک از آنها، می توانید متن کامل مقاله انگلیسی همراه با ترجمه فارسی آن را دریافت فرمایید.
در صورتی که مقاله مورد نظر شما هنوز به فارسی ترجمه نشده باشد، مترجمان با تجربه ما آمادگی دارند آن را در اسرع وقت برای شما ترجمه نمایند.
Elsevier - ScienceDirect - الزویر - ساینس دایرکت
Keywords: یادگیری ماشین; Pattern recognition; Image processing; Machine learning; Fuzzy classification; Alpha-cuts; Reticular pattern; Dermoscopic structure;
Elsevier - ScienceDirect - الزویر - ساینس دایرکت
Keywords: یادگیری ماشین; Alloy phase prediction; Machine learning; Active learning; Interatomic potentials; Cluster expansion; Moment Tensor Potentials;
Elsevier - ScienceDirect - الزویر - ساینس دایرکت
Keywords: یادگیری ماشین; Wind turbine; Failure; Weather; Big data; Association rule mining; k-means clustering; Data mining; Machine learning; Operation & maintenance;