کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10118325 1632850 2005 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Erdős-Ginzburg-Ziv theorem for dihedral groups of large prime index
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Erdős-Ginzburg-Ziv theorem for dihedral groups of large prime index
چکیده انگلیسی
Let G be a finite group of order n, and let S=(a1,…,ak) be a sequence of elements in G. We call S a 1-product sequence if 1=∏i=1kaτ(i) holds for some permutation τ of {1,…,k}. By s(G) we denote the smallest integer t such that, every sequence of t elements in G contains a 1-product subsequence of length n. By D(G) we denote the smallest integer d such that every sequence of d elements in G contains a nonempty 1-product subsequence. We prove that if G is a non-Abelian group of order 2p then s(G)=|G|+D(G)−1=3p, where p≥4001 is a prime.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 26, Issue 7, October 2005, Pages 1053-1059
نویسندگان
, ,