کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10118388 | 1632855 | 2005 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Partitions of n into tn parts
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Szekeres proved, using complex analysis, an asymptotic formula for the number of partitions of n into at most k parts. Canfield discovered a simplification of the formula, and proved it without complex analysis. We re-prove the formula, in the asymptotic regime when k is at least a constant times n, by showing that it is equivalent to a local central limit theorem in Fristedt's model for random partitions. We then apply the formula to derive asymptotics for the number of minimal difference d partitions with a given number of parts. As a corollary, we find (explicitly computable) constants cd,βd,γd,Ïd such that the number of minimal difference d partitions of n is (1+o(1))cdnâ3/4exp(βdn) (a result of Meinardus), almost all of them (fraction a(1+o(1))) have approximately γdn parts, and the distribution of the number of parts in a random such partition is asymptotically normal with standard deviation (1+o(1))Ïdn1/4. In particular, γ2=15log[(1+5)/2]/Ï.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 26, Issue 1, January 2005, Pages 1-17
Journal: European Journal of Combinatorics - Volume 26, Issue 1, January 2005, Pages 1-17
نویسندگان
Dan Romik,