کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10127805 1645083 2018 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Using Twitter network to detect market segments in the airline industry
ترجمه فارسی عنوان
با استفاده از شبکه توییتر برای تشخیص بخش های بازار در صنعت هواپیمایی
کلمات کلیدی
هوا نیوزیلند، رفتار مشتریان، خوشه بندی رسانه های اجتماعی، شبکه اجتماعی،
موضوعات مرتبط
علوم انسانی و اجتماعی مدیریت، کسب و کار و حسابداری استراتژی و مدیریت استراتژیک
چکیده انگلیسی
The use of social media is increasingly considered a state-of-the-art practice for marketing campaigns. Researchers have investigated various social networks and media platforms to capture the behavior and characteristics of customers. This paper analyzes the official Twitter account of an airline company, Air New Zealand, to explore its market segments. To detect the communities of customers, we develop a network clustering method, which reveals the community classes of the network, along with a text mining analysis on each community detected by the cluster analysis. The results of the network analysis demonstrate that the social network of customers in the airline industry follows Pareto's principle that is similar to scale free networks. The findings of network clustering indicate Air New Zealand is essentially followed by New Zealand citizens. The local accounts are categorized into four communities: (1) lambda New Zealand citizens, (2) management, marketing, and digital media companies, (3) tourism and dining sectors, and (4) New Zealand sport players; while the global accounts fall into two communities: (1) worldwide celebrities and (2) the travel and aviation industry. The community detection method developed in this research is beneficial for marketing and customer strategy purposes as it enables airline companies to detect the categories of passengers interested into the brand. It also allows them to identify the potential sources for advertising by seeking out exceptionally connected customers who have high degrees of centrality.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Air Transport Management - Volume 73, October 2018, Pages 67-76
نویسندگان
, ,