کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10132997 1645584 2019 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
State estimation under non-Gaussian Lévy and time-correlated additive sensor noises: A modified Tobit Kalman filtering approach
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
State estimation under non-Gaussian Lévy and time-correlated additive sensor noises: A modified Tobit Kalman filtering approach
چکیده انگلیسی
The Tobit Kalman filter (TKF) is a powerful tool in solving the state estimation problem for linear systems with censored measurements. This paper is concerned with the Tobit Kalman filtering problem for discrete time-varying systems subject to non-Gaussian Lévy and time-correlated additive measurement noises. By referencing to the measurement differencing method, the time-correlation of the measurement noises is transformed into the cross-correlation between the equivalent measurement noise and the process noise. Then, by resorting to the Lévy-Ito theorem, the non-Gaussian Lévy measurement noises are transformed into equivalent Gaussian noises with unknown covariances. Based on the transformed Gaussian measurement noises, a modified recursive TKF is designed where the unknown noise covariances are carefully calculated. Simulation results are provided to illustrate the effectiveness of the proposed filter.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 154, January 2019, Pages 120-128
نویسندگان
, , , , ,