کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10132997 | 1645584 | 2019 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
State estimation under non-Gaussian Lévy and time-correlated additive sensor noises: A modified Tobit Kalman filtering approach
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The Tobit Kalman filter (TKF) is a powerful tool in solving the state estimation problem for linear systems with censored measurements. This paper is concerned with the Tobit Kalman filtering problem for discrete time-varying systems subject to non-Gaussian Lévy and time-correlated additive measurement noises. By referencing to the measurement differencing method, the time-correlation of the measurement noises is transformed into the cross-correlation between the equivalent measurement noise and the process noise. Then, by resorting to the Lévy-Ito theorem, the non-Gaussian Lévy measurement noises are transformed into equivalent Gaussian noises with unknown covariances. Based on the transformed Gaussian measurement noises, a modified recursive TKF is designed where the unknown noise covariances are carefully calculated. Simulation results are provided to illustrate the effectiveness of the proposed filter.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 154, January 2019, Pages 120-128
Journal: Signal Processing - Volume 154, January 2019, Pages 120-128
نویسندگان
Hang Geng, Zidong Wang, Yuhua Cheng, Fuad E. Alsaadi, Abdullah M. Dobaie,