کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10136567 | 1645688 | 2018 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Robust destriping method based on data-driven learning
ترجمه فارسی عنوان
روش تخریب شدید بر مبنای یادگیری مبتنی بر داده
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تخریب تصویر، یادگیری مبتنی بر داده ها، شبکه های عصبی انعقادی،
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
فیزیک اتمی و مولکولی و اپتیک
چکیده انگلیسی
Destriping is the crucial first step of many multidetector imaging pipelines since the stripes greatly decrease the quality of obtained data and limit subsequent applications. It is also a severely ill-posed issue that estimates true gray value per pixel from a single stripe measurement. Existing approaches leverage hand-crafted filters or priors but show visually unsatisfactory results where some residual stripes still remain and the quantitative values of image data are lost. To address these problems, we propose a new data-driven method. We train a convolutional neural network on a large set of ground truth data instead of using hand-tuned filters. A UNet-like network is used to learn the regularity of complex stripe noise characteristics. To generate high-quality images, we combine a per-pixel loss and a perceptual loss to penalize mismatch between the network output and ground-truth images. Experiments show that our network significantly outperforms state-of-the-art destriping approaches in real-captured noise images of many imaging fields. Our code is available online at https://github.com/Kuangxd/DDL-SR.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Infrared Physics & Technology - Volume 94, November 2018, Pages 142-150
Journal: Infrared Physics & Technology - Volume 94, November 2018, Pages 142-150
نویسندگان
Xiaodong Kuang, Xiubao Sui, Yuan Liu, Chengwei Liu, Qian Chen, Guohua Gu,