کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10136858 | 1645692 | 2018 | 25 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Quantizations of the classical time of arrival and their dynamics
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
فیزیک و نجوم (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The classical time of arrival in the interacting case is quantized by way of quantizing its expansion about the free time of arrival. The quantization is formulated in coordinate representation which represents ordering rules in terms of two variable polynomial functions. This leads to representations of the quantized time of arrival operators as integral operators whose kernels are determined by the chosen ordering rule. The formulation lends itself to generalization which allows construction of time of arrival operators that cannot be obtained by direct quantization using particular ordering rules. Weyl, symmetric and Born-Jordan quantizations are specifically studied. The dynamics of the eigenfunctions of the different time of arrival operators are investigated. The eigenfunctions exhibit unitary arrival at the intended arrival point at their respective eigenvalues.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Physics - Volume 397, October 2018, Pages 278-302
Journal: Annals of Physics - Volume 397, October 2018, Pages 278-302
نویسندگان
Eric A. Galapon, John Jaykel P. Magadan,