| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 10139279 | 1645952 | 2019 | 16 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Greedy active learning algorithm for logistic regression models
												
											ترجمه فارسی عنوان
													الگوریتم یادگیری فعال حریص برای مدل های رگرسیون لجستیک
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی کامپیوتر
													نظریه محاسباتی و ریاضیات
												
											چکیده انگلیسی
												We study a logistic model-based active learning procedure for binary classification problems, in which we adopt a batch subject selection strategy with a modified sequential experimental design method. Moreover, accompanying the proposed subject selection scheme, we simultaneously conduct a greedy variable selection procedure such that we can update the classification model with all labeled training subjects. The proposed algorithm repeatedly performs both subject and variable selection steps until a prefixed stopping criterion is reached. Our numerical results show that the proposed procedure has competitive performance, with smaller training size and a more compact model compared with that of the classifier trained with all variables and a full data set. We also apply the proposed procedure to a well-known wave data set (Breiman et al., 1984) and a MAGIC gamma telescope data set to confirm the performance of our method.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 129, January 2019, Pages 119-134
											Journal: Computational Statistics & Data Analysis - Volume 129, January 2019, Pages 119-134
نویسندگان
												Hsiang-Ling Hsu, Yuan-chin Ivan Chang, Ray-Bing Chen, 
											