کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10139279 1645952 2019 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Greedy active learning algorithm for logistic regression models
ترجمه فارسی عنوان
الگوریتم یادگیری فعال حریص برای مدل های رگرسیون لجستیک
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی
We study a logistic model-based active learning procedure for binary classification problems, in which we adopt a batch subject selection strategy with a modified sequential experimental design method. Moreover, accompanying the proposed subject selection scheme, we simultaneously conduct a greedy variable selection procedure such that we can update the classification model with all labeled training subjects. The proposed algorithm repeatedly performs both subject and variable selection steps until a prefixed stopping criterion is reached. Our numerical results show that the proposed procedure has competitive performance, with smaller training size and a more compact model compared with that of the classifier trained with all variables and a full data set. We also apply the proposed procedure to a well-known wave data set (Breiman et al., 1984) and a MAGIC gamma telescope data set to confirm the performance of our method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 129, January 2019, Pages 119-134
نویسندگان
, , ,