کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10149829 1646775 2018 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Stokes phenomenon, Gelfand-Zeitlin systems and relative Ginzburg-Weinstein linearization
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Stokes phenomenon, Gelfand-Zeitlin systems and relative Ginzburg-Weinstein linearization
چکیده انگلیسی
In 2007, Alekseev-Meinrenken proved that there exists a Ginzburg-Weinstein diffeomorphism from the dual Lie algebra u(n)⁎ to the dual Poisson Lie group U(n)⁎ compatible with the Gelfand-Zeitlin integrable systems. In this paper, we explicitly construct such diffeomorphisms via Stokes phenomenon and Boalch's dual exponential maps. Then we introduce a relative version of the Ginzburg-Weinstein linearization motivated by irregular Riemann-Hilbert correspondence, and generalize the results of Enriquez-Etingof-Marshall to this relative setting. In particular, we prove the connection matrix for a certain irregular Riemann-Hilbert problem satisfies a relative gauge transformation equation of the Alekseev-Meinrenken dynamical r-matrices. This gauge equation is then derived as the semiclassical limit of the relative Drinfeld twist equation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 338, 7 November 2018, Pages 237-265
نویسندگان
,