کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10151169 | 681441 | 2019 | 24 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Mixtures of generalized hyperbolic distributions and mixtures of skew-t distributions for model-based clustering with incomplete data
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Robust clustering from incomplete data is an important topic because, in many practical situations, real datasets are heavy-tailed, asymmetric, and/or have arbitrary patterns of missing observations. Flexible methods and algorithms for model-based clustering are presented via mixture of the generalized hyperbolic distributions and its limiting case, the mixture of multivariate skew-t distributions. An analytically feasible EM algorithm is formulated for parameter estimation and imputation of missing values for mixture models employing missing at random mechanisms. The proposed methodologies are investigated through a simulation study with varying proportions of synthetic missing values and illustrated using a real dataset. Comparisons are made with those obtained from the traditional mixture of generalized hyperbolic distribution counterparts by filling in the missing data using the mean imputation method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 130, February 2019, Pages 18-41
Journal: Computational Statistics & Data Analysis - Volume 130, February 2019, Pages 18-41
نویسندگان
Yuhong Wei, Yang Tang, Paul D. McNicholas,