کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10151169 681441 2019 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mixtures of generalized hyperbolic distributions and mixtures of skew-t distributions for model-based clustering with incomplete data
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Mixtures of generalized hyperbolic distributions and mixtures of skew-t distributions for model-based clustering with incomplete data
چکیده انگلیسی
Robust clustering from incomplete data is an important topic because, in many practical situations, real datasets are heavy-tailed, asymmetric, and/or have arbitrary patterns of missing observations. Flexible methods and algorithms for model-based clustering are presented via mixture of the generalized hyperbolic distributions and its limiting case, the mixture of multivariate skew-t distributions. An analytically feasible EM algorithm is formulated for parameter estimation and imputation of missing values for mixture models employing missing at random mechanisms. The proposed methodologies are investigated through a simulation study with varying proportions of synthetic missing values and illustrated using a real dataset. Comparisons are made with those obtained from the traditional mixture of generalized hyperbolic distribution counterparts by filling in the missing data using the mean imputation method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 130, February 2019, Pages 18-41
نویسندگان
, , ,