کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10151388 | 863650 | 2019 | 25 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An asymptotically compatible meshfree quadrature rule for nonlocal problems with applications to peridynamics
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We present a meshfree quadrature rule for compactly supported nonlocal integro-differential equations (IDEs) with radial kernels. We apply this rule to develop a meshfree discretization of a peridynamic solid mechanics model that requires no background mesh. Existing discretizations of peridynamic models have been shown to exhibit a lack of asymptotic compatibility to the corresponding linearly elastic local solution. By posing the quadrature rule as an equality constrained least squares problem, we obtain asymptotically compatible convergence by introducing polynomial reproduction constraints. Our approach naturally handles traction-free conditions, surface effects, and damage modeling for both static and dynamic problems. We demonstrate high-order convergence to the local theory by comparing to manufactured solutions and to cases with crack singularities for which an analytic solution is available. Finally, we verify the applicability of the approach to realistic problems by reproducing high-velocity impact results from the Kalthoff-Winkler experiments.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 343, 1 January 2019, Pages 151-165
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 343, 1 January 2019, Pages 151-165
نویسندگان
Nathaniel Trask, Huaiqian You, Yue Yu, Michael L. Parks,