کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10286316 | 504179 | 2005 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Applying support vector machines to predict building energy consumption in tropical region
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The methodology to predict building energy consumption is increasingly important for building energy baseline model development and measurement and verification protocol (MVP). This paper presents support vector machines (SVM), a new neural network algorithm, to forecast building energy consumption in the tropical region. The objective of this paper is to examine the feasibility and applicability of SVM in building load forecasting area. Four commercial buildings in Singapore are selected randomly as case studies. Weather data including monthly mean outdoor dry-bulb temperature (T0), relative humidity (RH) and global solar radiation (GSR) are taken as three input features. Mean monthly landlord utility bills are collected for developing and testing models. In addition, the performance of SVM with respect to two parameters, C and É, was explored using stepwise searching method based on radial-basis function (RBF) kernel. Finally, all prediction results are found to have coefficients of variance (CV) less than 3% and percentage error (%error) within 4%.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy and Buildings - Volume 37, Issue 5, May 2005, Pages 545-553
Journal: Energy and Buildings - Volume 37, Issue 5, May 2005, Pages 545-553
نویسندگان
Bing Dong, Cheng Cao, Siew Eang Lee,