کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10290207 | 509860 | 2005 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Feature separation using ICA for a one-dimensional time series and its application in fault detection
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی عمران و سازه
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Principal component analysis (PCA) is a method that transforms multiple data series into uncorrelated data series. Independent component analysis (ICA) is a method that separates multiple data series into independent data series. Both methods have been used in fault detection. However, both require signals from at least two separate sensors. To overcome this requirement and utilize the fault detection capability of ICA and PCA, we propose to use wavelet transform to pre-process the data collected from a single sensor and then use the coefficients of the wavelet transforms at different scales as input to ICA and PCA. The effectiveness of this method is demonstrated by applying it to both a simulated signal series and a vibration signal series collected from a gearbox. The results show that the method of combining wavelet transform and ICA works better than the method of combining wavelet transform and PCA for impulse detection based on a one-dimensional vibration data series.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Sound and Vibration - Volume 287, Issue 3, 22 October 2005, Pages 614-624
Journal: Journal of Sound and Vibration - Volume 287, Issue 3, 22 October 2005, Pages 614-624
نویسندگان
Ming J. Zuo, Jing Lin, Xianfeng Fan,