کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10302136 | 542612 | 2005 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
ConPar: a method for identifying groups of concordant subject proximity matrices for subsequent multidimensional scaling analyses
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A common representation of data within the context of multidimensional scaling (MDS) is a collection of symmetric proximity (similarity or dissimilarity) matrices for each of M subjects. There are a number of possible alternatives for analyzing these data, which include: (a) conducting an MDS analysis on a single matrix obtained by pooling (averaging) the M subject matrices, (b) fitting a separate MDS structure for each of the M matrices, or (c) employing an individual differences MDS model. We discuss each of these approaches, and subsequently propose a straightforward new method (CONcordance PARtitioning-ConPar), which can be used to identify groups of individual-subject matrices with concordant proximity structures. This method collapses the three-way data into a subjectÃsubject dissimilarity matrix, which is subsequently clustered using a branch-and-bound algorithm that minimizes partition diameter. Extensive Monte Carlo testing revealed that, when compared to K-means clustering of the proximity data, ConPar generally provided better recovery of the true subject cluster memberships. A demonstration using empirical three-way data is also provided to illustrate the efficacy of the proposed method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Psychology - Volume 49, Issue 2, April 2005, Pages 142-154
Journal: Journal of Mathematical Psychology - Volume 49, Issue 2, April 2005, Pages 142-154
نویسندگان
Michael J. Brusco, J. Dennis Cradit,