کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10326007 | 677468 | 2005 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Self-organizing information fusion and hierarchical knowledge discovery: a new framework using ARTMAP neural networks
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
ARTMAPPattern recognition - بازشناخت الگوAdaptive resonance theory (ART) - تئوری رزونانس تطبیقی (ART)Multi-sensor fusion - ترکیب چند سنسورData mining - دادهکاویInformation fusion - دیتا فیوژن یا تلفیق اطلاعاتRemote sensing - سنجش از راه دورassociation rules - قوانین وابستگیDistributed coding - کدگذاری توزیع شده
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Classifying novel terrain or objects from sparse, complex data may require the resolution of conflicting information from sensors working at different times, locations, and scales, and from sources with different goals and situations. Information fusion methods can help resolve inconsistencies, as when evidence variously suggests that an object's class is car, truck, or airplane. The methods described here address a complementary problem, supposing that information from sensors and experts is reliable though inconsistent, as when evidence suggests that an object's class is car, vehicle, and man-made. Underlying relationships among classes are assumed to be unknown to the automated system or the human user. The ARTMAP information fusion system uses distributed code representations that exploit the neural network's capacity for one-to-many learning in order to produce self-organizing expert systems that discover hierarchical knowledge structures. The fusion system infers multi-level relationships among groups of output classes, without any supervised labeling of these relationships. The procedure is illustrated with two image examples, but is not limited to the image domain.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 18, Issue 3, April 2005, Pages 287-295
Journal: Neural Networks - Volume 18, Issue 3, April 2005, Pages 287-295
نویسندگان
Gail A. Carpenter, Siegfried Martens, Ogi J. Ogas,