کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10326069 677481 2005 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Recursive principal components analysis
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Recursive principal components analysis
چکیده انگلیسی
A recurrent linear network can be trained with Oja's constrained Hebbian learning rule. As a result, the network learns to represent the temporal context associated to its input sequence. The operation performed by the network is a generalization of Principal Components Analysis (PCA) to time-series, called Recursive PCA. The representations learned by the network are adapted to the temporal statistics of the input. Moreover, sequences stored in the network may be retrieved explicitly, in the reverse order of presentation, thus providing a straight-forward neural implementation of a logical stack.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 18, Issue 8, October 2005, Pages 1051-1063
نویسندگان
,