کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10326493 678118 2011 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An efficient self-organizing RBF neural network for water quality prediction
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
An efficient self-organizing RBF neural network for water quality prediction
چکیده انگلیسی
This paper presents a flexible structure Radial Basis Function (RBF) neural network (FS-RBFNN) and its application to water quality prediction. The FS-RBFNN can vary its structure dynamically in order to maintain the prediction accuracy. The hidden neurons in the RBF neural network can be added or removed online based on the neuron activity and mutual information (MI), to achieve the appropriate network complexity and maintain overall computational efficiency. The convergence of the algorithm is analyzed in both the dynamic process phase and the phase following the modification of the structure. The proposed FS-RBFNN has been tested and compared to other algorithms by applying it to the problem of identifying a nonlinear dynamic system. Experimental results show that the FS-RBFNN can be used to design an RBF structure which has fewer hidden neurons; the training time is also much faster. The algorithm is applied for predicting water quality in the wastewater treatment process. The results demonstrate its effectiveness.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 24, Issue 7, September 2011, Pages 717-725
نویسندگان
, , ,