کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10326503 | 678118 | 2011 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Evolutionary q-Gaussian radial basis function neural networks for multiclassification
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper proposes a radial basis function neural network (RBFNN), called the q-Gaussian RBFNN, that reproduces different radial basis functions (RBFs) by means of a real parameter q. The architecture, weights and node topology are learnt through a hybrid algorithm (HA). In order to test the overall performance, an experimental study with sixteen data sets taken from the UCI repository is presented. The q-Gaussian RBFNN was compared to RBFNNs with Gaussian, Cauchy and inverse multiquadratic RBFs in the hidden layer and to other probabilistic classifiers, including different RBFNN design methods, support vector machines (SVMs), a sparse classifier (sparse multinomial logistic regression, SMLR) and a non-sparse classifier (regularized multinomial logistic regression, RMLR). The results show that the q-Gaussian model can be considered very competitive with the other classification methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 24, Issue 7, September 2011, Pages 779-784
Journal: Neural Networks - Volume 24, Issue 7, September 2011, Pages 779-784
نویسندگان
Francisco Fernández-Navarro, César Hervás-MartÃnez, P.A. Gutiérrez, M. Carbonero-Ruz,