کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10326529 | 678144 | 2008 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Neural network learning of optimal Kalman prediction and control
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله
چکیده انگلیسی
The requirements of KPC appear to impose significant constraints on the allowed NN circuitry and signal flows. The NN architecture implied by these constraints bears certain resemblances to the local-circuit architecture of mammalian cerebral cortex. We discuss these resemblances, as well as caveats that limit our current ability to draw inferences for biological function. It has been suggested that the local cortical circuit (LCC) architecture may perform core functions (as yet unknown) that underlie sensory, motor, and other cortical processing. It is reasonable to conjecture that such functions may include prediction, the estimation or inference of missing or noisy sensory data, and the goal-driven generation of control signals. The resemblances found between the KPC NN architecture and that of the LCC are consistent with this conjecture.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 21, Issue 9, November 2008, Pages 1328-1343
Journal: Neural Networks - Volume 21, Issue 9, November 2008, Pages 1328-1343
نویسندگان
Ralph Linsker,