کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10326539 | 678144 | 2008 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A constrained sequential EM algorithm for speech enhancement
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Speech enhancement is a fundamental problem, the goal of which is to estimate clean speech st, given a noise-contaminated signal st+nt, where nt is white or colored noise. This task can be viewed as a probabilistic inference problem which involves estimating the posterior distribution of hidden clean speech, given a noisy observation. Kalman filter is a representative method but is restricted to Gaussian distributions only. We consider the generalized auto-regressive (GAR) model in order to capture the non-Gaussian characteristics of speech. Then we present a constrained sequential EM algorithm where Rao-Blackwellized particle filters (RBPFs) are used in the E-step and model parameters are updated in a sequential manner in the M-step under positivity constraints for noise variance parameters. Numerical experiments confirm the high performance of our proposed method, compared to Kalman filter-based methods, in the task of sequential speech enhancement.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 21, Issue 9, November 2008, Pages 1401-1409
Journal: Neural Networks - Volume 21, Issue 9, November 2008, Pages 1401-1409
نویسندگان
Sunho Park, Seungjin Choi,