کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10326905 680409 2005 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On-line learning of robot arm impedance using neural networks
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
On-line learning of robot arm impedance using neural networks
چکیده انگلیسی
Impedance control is an effective control method for a manipulator that is in contact with its environment. Nevertheless, the characteristics of force and motion control are determined by impedance parameters of the end-effector of the manipulator, which must be designed according to the given task. This report presents a method that uses neural networks to regulate impedance parameters of the manipulator's end-effector while identifying environmental characteristics through on-line learning. Four kinds of neural networks are used: three for the position, velocity and force control of the end-effector, and one for the identification of environments. First, the neural networks for the position and velocity control are trained during free movements. Then, the neural networks for the force control and identification of environments are trained during contact movements. Computer simulations show that the method can regulate stiffness, viscosity and inertia parameters of the end-effector and identify unknown properties of the environments through on-line learning.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Robotics and Autonomous Systems - Volume 52, Issue 4, 30 September 2005, Pages 257-271
نویسندگان
, ,