کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10327309 | 680970 | 2005 | 26 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Hinged dissection of polyominoes and polyforms
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A hinged dissection of a set of polygons S is a collection of polygonal pieces hinged together at vertices that can be rotated into any member of S. We present a hinged dissection of all edge-to-edge gluings of n congruent copies of a polygon P that join corresponding edges of P. This construction uses kn pieces, where k is the number of vertices of P. When P is a regular polygon, we show how to reduce the number of pieces to âk/2â(nâ1). In particular, we consider polyominoes (made up of unit squares), polyiamonds (made up of equilateral triangles), and polyhexes (made up of regular hexagons). We also give a hinged dissection of all polyabolos (made up of right isosceles triangles), which do not fall under the general result mentioned above. Finally, we show that if P can be hinged into Q, then any edge-to-edge gluing of n congruent copies of P can be hinged into any edge-to-edge gluing of n congruent copies of Q.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Geometry - Volume 31, Issue 3, June 2005, Pages 237-262
Journal: Computational Geometry - Volume 31, Issue 3, June 2005, Pages 237-262
نویسندگان
Erik D. Demaine, Martin L. Demaine, David Eppstein, Greg N. Frederickson, Erich Friedman,