کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10327309 680970 2005 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hinged dissection of polyominoes and polyforms
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Hinged dissection of polyominoes and polyforms
چکیده انگلیسی
A hinged dissection of a set of polygons S is a collection of polygonal pieces hinged together at vertices that can be rotated into any member of S. We present a hinged dissection of all edge-to-edge gluings of n congruent copies of a polygon P that join corresponding edges of P. This construction uses kn pieces, where k is the number of vertices of P. When P is a regular polygon, we show how to reduce the number of pieces to ⌈k/2⌉(n−1). In particular, we consider polyominoes (made up of unit squares), polyiamonds (made up of equilateral triangles), and polyhexes (made up of regular hexagons). We also give a hinged dissection of all polyabolos (made up of right isosceles triangles), which do not fall under the general result mentioned above. Finally, we show that if P can be hinged into Q, then any edge-to-edge gluing of n congruent copies of P can be hinged into any edge-to-edge gluing of n congruent copies of Q.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Geometry - Volume 31, Issue 3, June 2005, Pages 237-262
نویسندگان
, , , , ,