کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10327353 | 680994 | 2015 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Probabilistic bounds on the length of a longest edge in Delaunay graphs of random points in d-dimensions
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Motivated by low energy consumption in geographic routing in wireless networks, there has been recent interest in determining bounds on the length of edges in the Delaunay graph of randomly distributed points. Asymptotic results are known for random networks in planar domains. In this paper, we obtain upper and lower bounds that hold with parametric probability in any dimension, for points distributed uniformly at random in domains with and without boundary. The results obtained are asymptotically tight for all relevant values of such probability and constant number of dimensions, and show that the overhead produced by boundary nodes in the plane holds also for higher dimensions. To our knowledge, this is the first comprehensive study on the lengths of long edges in Delaunay graphs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Geometry - Volume 48, Issue 2, February 2015, Pages 134-146
Journal: Computational Geometry - Volume 48, Issue 2, February 2015, Pages 134-146
نویسندگان
Esther M. Arkin, Antonio Fernández Anta, Joseph S.B. Mitchell, Miguel A. Mosteiro,