کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10328112 | 681570 | 2010 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Avoiding bias due to perfect prediction in multiple imputation of incomplete categorical variables
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Multiple imputation is a popular way to handle missing data. Automated procedures are widely available in standard software. However, such automated procedures may hide many assumptions and possible difficulties from the view of the data analyst. Imputation procedures such as monotone imputation and imputation by chained equations often involve the fitting of a regression model for a categorical outcome. If perfect prediction occurs in such a model, then automated procedures may give severely biased results. This is a problem in some standard software, but it may be avoided by bootstrap methods, penalised regression methods, or a new augmentation procedure.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 54, Issue 10, 1 October 2010, Pages 2267-2275
Journal: Computational Statistics & Data Analysis - Volume 54, Issue 10, 1 October 2010, Pages 2267-2275
نویسندگان
Ian R. White, Rhian Daniel, Patrick Royston,