کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10328135 | 681631 | 2005 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Generalised indirect classifiers
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Supervised classifiers are usually based on a set of predictors given in the learning sample as well as in later test samples. Especially in the medical field a reduction of the number of examinations is often desired to save patients time and costs. The approach of indirect classification makes use of all available variables of the learning sample, although it classifies based only on a reduced set of variables. A general definition of indirect classification is given and a specific generalised indirect classifier is proposed. This classifier combines an arbitrary number of regression models which predict those variables that are not acquired for future observations. The performance of the generalised indirect classifier is investigated by using a simulation model which mimics different kinds of decision surfaces and by the application to different data sets. Misclassification results of direct and indirect classifiers are compared.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 49, Issue 3, 1 June 2005, Pages 849-861
Journal: Computational Statistics & Data Analysis - Volume 49, Issue 3, 1 June 2005, Pages 849-861
نویسندگان
A. Peters, T. Hothorn, B. Lausen,