کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10328159 | 681636 | 2005 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Bayesian computation for logistic regression
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A method for the simulation of samples from the exact posterior distributions of the parameters in logistic regression is proposed. It is based on the principle of data augmentation and a latent variable is introduced, similar to the approach of Albert and Chib (J. Am. Stat. Assoc. 88 (1993) 669), who applied it to the probit model. In general, the full conditional distributions are intractable, but with the introductions of the latent variable all conditional distributions are uniform, and the Gibbs sampler is easily applicable. Marginal likelihoods for model selection can be obtained at the expense of additional Gibbs cycles. The technique is extended and can be applied with nominal or ordinal polychotomous data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 48, Issue 4, 1 April 2005, Pages 857-868
Journal: Computational Statistics & Data Analysis - Volume 48, Issue 4, 1 April 2005, Pages 857-868
نویسندگان
Pieter C.N. Groenewald, Lucky Mokgatlhe,