کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10332819 687802 2014 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A low-cost-memory CUDA implementation of the conjugate gradient method applied to globally supported radial basis functions implicits
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
A low-cost-memory CUDA implementation of the conjugate gradient method applied to globally supported radial basis functions implicits
چکیده انگلیسی
Hermitian radial basis functions implicits is a method capable of reconstructing implicit surfaces from first-order Hermitian data. When globally supported radial functions are used, a dense symmetric linear system must be solved. In this work, we aim at exploring and computing a matrix-free implementation of the Conjugate Gradients Method on the GPU in order to solve such linear system. The proposed method parallelly rebuilds the matrix on demand for each iteration. As a result, it is able to compute the Hermitian-based interpolant for datasets that otherwise could not be handled due to the high memory demanded by their linear systems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Science - Volume 5, Issue 5, September 2014, Pages 701-708
نویسندگان
, , ,