کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10341031 695319 2014 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multi-scale discriminant saliency with wavelet-based Hidden Markov Tree modelling
ترجمه فارسی عنوان
چندگانگی جداییطلبانه با مدل سازی درخت مخفی مارکف مبتنی بر موجک
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر شبکه های کامپیوتری و ارتباطات
چکیده انگلیسی
Supposed saliency is a binary classification between centre and surround classes, saliency value is measured as their discriminant power. As the features are defined by sizes of chosen windows, a saliency value at each location is varied accordingly. This paper proposes computing saliency as discriminant power in multiple dyadic scales of Wavelet Hidden Markov Tree (HMT), in which two consecutive dyadic scales provide surrounding and central features, organized in a quad-tree structure. Their discriminant power is estimated as maximum a posterior probability (MAP) by Expectation-Maximization (EM) iterations. Then, a final saliency value is the maximum discriminant power generated among these scales. Standard quantitative tools and qualitative assessments are used for evaluating the proposed multi-scale discriminant saliency (MDIS) against the well-know information based approach AIM on its image collection with eye-tracking data. Simulation results are presented and analysed to verify the validity of MDIS as well as point out its limitation for further research direction.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Electrical Engineering - Volume 40, Issue 4, May 2014, Pages 1376-1389
نویسندگان
, , , ,