کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10344480 697787 2015 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Continuous discovery of co-location contexts from Bluetooth data
ترجمه فارسی عنوان
کشف مستمر زمینه های همکاری مکان از اطلاعات بلوتوث
کلمات کلیدی
غیر پارامتریک، روند بوفه هند افزایشی فیلتر ذرات، زمینه اشتراک گذاری،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر شبکه های کامپیوتری و ارتباطات
چکیده انگلیسی
The discovery of contexts is important for context-aware applications in pervasive computing. This is a challenging problem because of the stream nature of data, the complexity and changing nature of contexts. We propose a Bayesian nonparametric model for the detection of co-location contexts from Bluetooth signals. By using an Indian buffet process as the prior distribution, the model can discover the number of contexts automatically. We introduce a novel fixed-lag particle filter that processes data incrementally. This sampling scheme is especially suitable for pervasive computing as the computational requirements remain constant in spite of growing data. We examine our model on a synthetic dataset and two real world datasets. To verify the discovered contexts, we compare them to the communities detected by the Louvain method, showing a strong correlation between the results of the two methods. Fixed-lag particle filter is compared with Gibbs sampling in terms of the normalized factorization error that shows a close performance between the two inference methods. As fixed-lag particle filter processes a small chunk of data when it comes and does not need to be restarted, its execution time is significantly shorter than that of Gibbs sampling.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pervasive and Mobile Computing - Volume 16, Part B, January 2015, Pages 286-304
نویسندگان
, , , ,