کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10345444 | 698283 | 2012 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Multivariate Bayesian modeling of known and unknown causes of events-An application to biosurveillance
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper investigates Bayesian modeling of known and unknown causes of events in the context of disease-outbreak detection. We introduce a multivariate Bayesian approach that models multiple evidential features of every person in the population. This approach models and detects (1) known diseases (e.g., influenza and anthrax) by using informative prior probabilities and (2) unknown diseases (e.g., a new, highly contagious respiratory virus that has never been seen before) by using relatively non-informative prior probabilities. We report the results of simulation experiments which support that this modeling method can improve the detection of new disease outbreaks in a population. A contribution of this paper is that it introduces a multivariate Bayesian approach for jointly modeling both known and unknown causes of events. Such modeling has general applicability in domains where the space of known causes is incomplete.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods and Programs in Biomedicine - Volume 107, Issue 3, September 2012, Pages 436-446
Journal: Computer Methods and Programs in Biomedicine - Volume 107, Issue 3, September 2012, Pages 436-446
نویسندگان
Yanna Shen, Gregory F. Cooper,