کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10347220 | 699111 | 2011 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Sampled fictitious play for approximate dynamic programming
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Sampled fictitious play (SFP) is a recently proposed iterative learning mechanism for computing Nash equilibria of non-cooperative games. For games of identical interests, every limit point of the sequence of mixed strategies induced by the empirical frequencies of best response actions that players in SFP play is a Nash equilibrium. Because discrete optimization problems can be viewed as games of identical interests wherein Nash equilibria define a type of local optimum, SFP has recently been employed as a heuristic optimization algorithm with promising empirical performance. However, there have been no guarantees of convergence to a globally optimal Nash equilibrium established for any of the problem classes considered to date. In this paper, we introduce a variant of SFP and show that it converges almost surely to optimal policies in model-free, finite-horizon stochastic dynamic programs. The key idea is to view the dynamic programming states as players, whose common interest is to maximize the total multi-period expected reward starting in a fixed initial state. We also offer empirical results suggesting that our SFP variant is effective in practice for small to moderate sized model-free problems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Operations Research - Volume 38, Issue 12, December 2011, Pages 1705-1718
Journal: Computers & Operations Research - Volume 38, Issue 12, December 2011, Pages 1705-1718
نویسندگان
Marina Epelman, Archis Ghate, Robert L. Smith,