کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10348782 | 721424 | 2005 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A multi-agent reinforcement learning approach to obtaining dynamic control policies for stochastic lot scheduling problem
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper presents a methodology that, for the problem of scheduling of a single server on multiple products, finds a dynamic control policy via intelligent agents. The dynamic (state dependent) policy optimizes a cost function based on the WIP inventory, the backorder penalty costs and the setup costs, while meeting the productivity constraints for the products. The methodology uses a simulation optimization technique called Reinforcement Learning (RL) and was tested on a stochastic lot-scheduling problem (SELSP) having a state-action space of size 1.8Â ÃÂ 107. The dynamic policies obtained through the RL-based approach outperformed various cyclic policies. The RL approach was implemented via a multi-agent control architecture where a decision agent was assigned to each of the products. A Neural Network based approach (least mean square (LMS) algorithm) was used to approximate the reinforcement value function during the implementation of the RL-based methodology. Finally, the dynamic control policy over the large state space was extracted from the reinforcement values using a commercially available tree classifier tool.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Simulation Modelling Practice and Theory - Volume 13, Issue 5, July 2005, Pages 389-406
Journal: Simulation Modelling Practice and Theory - Volume 13, Issue 5, July 2005, Pages 389-406
نویسندگان
Carlos D. Paternina-Arboleda, Tapas K. Das,