کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10349037 | 862221 | 2007 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Neural-network-based approaches for software reliability estimation using dynamic weighted combinational models
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
شبکه های کامپیوتری و ارتباطات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Software reliability is the probability of failure-free software operation for a specified period of time in a specified environment. During the last three decades, many software reliability growth models (SRGMs) have been proposed and analyzed for measuring software reliability growth. SRGMs are mathematical models that represent software failures as a random process and can be used to evaluate development status during testing. However, most of SRGMs depend on some assumptions or distributions. In this paper, we propose an artificial neural-network-based approach for software reliability estimation and modeling. We first explain the neural networks from the mathematical viewpoints of software reliability modeling. We will show how to apply neural network to predict software reliability by designing different elements of neural networks. Furthermore, we will use the neural network approach to build a dynamic weighted combinational model (DWCM). The applicability of proposed model is demonstrated through real software failure data sets. The results obtained from the experiments show that the proposed model has a fairly accurate prediction capability.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Systems and Software - Volume 80, Issue 4, April 2007, Pages 606-615
Journal: Journal of Systems and Software - Volume 80, Issue 4, April 2007, Pages 606-615
نویسندگان
Yu-Shen Su, Chin-Yu Huang,