کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10351564 | 864493 | 2012 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Using partial decision trees to predict Parkinson's symptoms: A new approach for diagnosis and therapy in patients suffering from Parkinson's disease
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this work we present a method based on partial decision trees and association rules for the prediction of Parkinson's disease (PD) symptoms. The proposed method is part of the PERFORM system. PERFORM is used for the treatment of PD patients and even advocate specific combinations of medications. The approach presented in this paper is included in the data miner module of PERFORM. A patient performs some initial examinations and the module predicts the future occurrence of the symptoms based on the initial examinations and medications taken. Using the method, the expert can prescribe specific medications that will not cause, or postpone the appearance of specific symptoms to the patient. The approach employed is able to provide interpretation for the predictions made, by providing rules. The models have been developed and evaluated using real patient's data and the respective results are reported. Another functionality of the data miner module is the extraction of rules through a user friendly interface using association rule mining algorithms. These rules can be used for the prediction analysis of patient's reaction to certain treatment plans. The accuracy of the symptoms' prediction ranges from 57.1 to 77.4%, depending on the symptom.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Biology and Medicine - Volume 42, Issue 2, February 2012, Pages 195-204
Journal: Computers in Biology and Medicine - Volume 42, Issue 2, February 2012, Pages 195-204
نویسندگان
Themis P. Exarchos, Alexandros T. Tzallas, Dina Baga, Dimitra Chaloglou, Dimitrios I. Fotiadis, Sofia Tsouli, Maria Diakou, Spyros Konitsiotis,