کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10351682 | 864509 | 2013 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Hybrid fusion of linear, non-linear and spectral models for the dynamic modeling of sEMG and skeletal muscle force: An application to upper extremity amputation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
DaubechiesVWAPafAsEMGKICDWTICAAICOutput error modelBICADCPCA - PCAAnalog to digital Converter - آنالوگ به تبدیل دیجیتالSurface electromyography - الکترومیوگرافی سطحیDiscrete wavelet transform - تبدیل موجک گسستهPrinciple component analysis - تجزیه و تحلیل اجزای اصلIndependent component analysis - تجزیه و تحلیل جزء مستقلData fusion - تلفیق داده هاSpectral models - مدل های طیفیBayesian information criterion - معیار اطلاعات بیزیwavelets - موجک
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Estimating skeletal muscle (finger) forces using surface Electromyography (sEMG) signals poses many challenges. In general, the sEMG measurements are based on single sensor data. In this paper, two novel hybrid fusion techniques for estimating the skeletal muscle force from the sEMG array sensors are proposed. The sEMG signals are pre-processed using five different filters: Butterworth, Chebychev Type II, Exponential, Half-Gaussian and Wavelet transforms. Dynamic models are extracted from the acquired data using Nonlinear Wiener Hammerstein (NLWH) models and Spectral Analysis Frequency Dependent Resolution (SPAFDR) models based system identification techniques. A detailed comparison is provided for the proposed filters and models using 18 healthy subjects. Wavelet transforms give higher mean correlation of 72.6±1.7 (mean±SD) and 70.4±1.5 (mean±SD) for NLWH and SPAFDR models, respectively, when compared to the other filters used in this work. Experimental verification of the fusion based hybrid models with wavelet transform shows a 96% mean correlation and 3.9% mean relative error with a standard deviation of ±1.3 and ±0.9 respectively between the overall hybrid fusion algorithm estimated and the actual force for 18 test subjects' k-fold cross validation data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Biology and Medicine - Volume 43, Issue 11, November 2013, Pages 1815-1826
Journal: Computers in Biology and Medicine - Volume 43, Issue 11, November 2013, Pages 1815-1826
نویسندگان
Chandrasekhar Potluri, Madhavi Anugolu, Marco P. Schoen, D. Subbaram Naidu, Alex Urfer, Steve Chiu,